

Fig. 8. Axes of the rigid body vibration.

References

Annex, B. G. (1963). J. Amer. Chem. Soc. 85, 3301. Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142. Harding, T. T. \& Wallwork, S. C. (1953). Acta Cryst. 6, 791.
Ito, T., Minobe, M. \& Sakurai, T. (1966). 21st. Ann. Meeting Phys. Soc. Japan.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory, Tennessee.
Kunir, T. (1967). Ph. D. Thesis, Univ. of Tokyo.
Mafrtmann-Moe, K. (1965). Acta Cryst. 19, 155.
Maftmann-Moe, K. (1966). Acta Cryst. 21, 979.
Matsuda, H., Osaki, K. \& Nitta, I. (1958). Bull. Chem. Soc. Japan, 31, 611.
Mulliken, R. S. (1952). J. Amer. Chem. Soc. 74, 811. Sakurai, T. (1965). Acta Cryst. 19, 320.
Sakurai, T., Ito, T., Iwasaki, H., Watanabe, Y. \& Fukuhara, M. (1967). Rep. Inst. Phys. Chem. Res. 43, 62.
Watanabe, K. (1957). J. Chem. Phys. 26, 542.

The Crystal Structure of $\mathbf{N b}_{\mathbf{2 1}} \mathbf{S}_{\mathbf{8}}{ }^{*}$

By H.F.Franzen, T. A. Beineke and B. R.Conard
Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010, U.S.A.

(Received 15 February 1967 and in revised form 31 August 1967)

Abstract

The crystal structure of $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ has been determined from single-crystal X-ray diffraction data. The compound crystallizes in the tetragonal system, space group $14 / m$ with unit-cell parameters $a=16.794 \AA$, $c=3.359 \AA$. The unit cell contains two formula units. All atoms are located in layers separated by $c / 2$. Refinement of the structure was performed by least-squares treatment of x and y positional parameters and isotropic temperature factor coefficients. Pauling bond orders indicate that the coordination of sulfur in this compound is seven. This result is consistent with sulfur atoms utilizing d orbitals to form electron deficient bonds to the metal atoms.

Introduction

The high temperature ($c a .1350^{\circ} \mathrm{C}$) preparation of a new subsulfide in the niobium-sulfur system, characterized as $\mathrm{Nb}_{2} \mathrm{~S}$, and some crystallographic data for the compound were recently reported (Franzen, DeJong \& Conard, 1966). The compositions reported were obtained by combustion techniques on samples which have since been identified as containing two phases. A more recent composition analysis is reported below.

Previous studies of the niobium-sulfur system in the range $0 \leq \mathrm{S} / \mathrm{Nb} \leq 1.0$ resulted in the identification of two phases, neither of which was the same as the phase reported here. Biltz \& Köcher (1938) reported a phase with the homogeneity range $0.5 \leq \mathrm{S} / \mathrm{Nb} \leq 1 \cdot 0$; Jellinek

[^0](1962) observed a $\mathrm{NbS}_{1-x}(x=0 \cdot 1$ to ?) phase with an ordered NiAs-type structure.

Investigations of the lower sulfides of Hf and Ti , namely $\mathrm{Hf}_{2} \mathrm{~S}$ (Franzen \& Graham, 1966) and $\mathrm{Ti}_{2} \mathrm{~S}$ (Owens, Conard \& Franzen, 1966), have resulted in a new interpretation of the bonding of sulfur in the monosulfides and lower sulfides of transition metals (Franzen, 1966). The interest in the crystal structure of $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ stemmed from a desire to describe more completely the chemistry of sulfur in the lower sulfides of transition metals.

Experimental

The previously reported crystallographic data for $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ are summarized as follows. The space group was reported to be $14 / \mathrm{m}$, the lattice parameters reported were $a=16.794 \pm 0.005, c=3.359 \pm 0.002 \AA$, and the number of ' Nb_{2} ' ' formula units per unit cell was estimated to be between 21 and 24 , based on a measured
density of 8.8 g.cm ${ }^{-3}$ (which corresponded to 2.3 $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ formula units per cell).

The density has been redetermined for a single phase sample of $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ to be $7 \cdot 8 \pm 0 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3}$, which corresponds to $2.0 \mathrm{Nb}_{21} \mathrm{~S}_{8}$ formula units per unit cell. More recent combustion analyses have been performed on single-phase samples under more carefully controlled conditions than before and yielded $\mathrm{S} / \mathrm{Nb}=0.34$.

Intensity data were collected with Mo $K \alpha$ radiation using a General Electric spectrogoniometer with a scintillation counter detector. A total of 557 independent reflections of $h k 0$ and $h k 1$ types were measured. Lorentz and polarization corrections were applied. Absorption corrections, based on the crystal's trapezoidal shape (average side length of about 40μ and thickness of about 30μ) were made with use of a program by Busing \& Levy (1957) adapted to the IBM $360 / 50$ computer. A total linear absorption coefficient of $136 \cdot 5 \mathrm{~cm}^{-1}$ was used in the absorption correction calculation. No extinction corrections were made.

Structure_determination

Unitary structure factors were obtained from the observed structure factors by a graphical method (Woolfson, 1961). Except for attenuation normally expected for the increase in scattering angle, the intensity data were observed to depend on l only so far as l was even or odd, indicating a layered structure with all atoms in the mirror planes of the centrosymmetric space group (Franzen, DeJong \& Conard, 1966). It follows that $U_{h k l+2}=U_{h k l}=U_{\bar{k} h l}=U_{k \vec{n} l}$. Thus, by the HarkerKasper inequalities (Harker \& Kasper, 1948) if $U_{h k l}$ and $U_{h-k, h+k, 0}$ are sufficiently large, then $U_{h-k}, h+k, 0$ is positive, and a similar remark holds for $U_{h+k, k-h, 0}$.
The 51 unitary structure factors with magnitudes greater than or equal to $0 \cdot 39$, about 9% of the total number of the observed reflections, were examined. Application of the reasoning described above yielded the sign of 19 of these as positive. One of the two degrees of freedom with respect to sign determination for the tetragonal case is removed by the bodycenter (Hauptmann \& Karle, 1953), and thus only one unitary structure factor sign could be arbitrarily determined. $U_{3,4,1}$ was arbitrarily taken to be positive. This sign, together with the 19 positive unitary structure factors discussed above and the Harker-Kasper inequalities, yielded 15 more positive structure factors. The sign of $U_{2}, 5,1$ was designated a, and combination of this structure factor and those known to be positive with those of the original 51 whose signs were as yet undetermined yielded 13 structure factors with the sign a.

Two electron density maps were computed utilizing the 47 unitary structure factors, one map with a positive, the other with a negative. These maps contained more peaks than could be explained on the basis of the cell content given by the density and lattice parameters by about a factor of two. Of several attempts to solve the
structure utilizing these electron density maps and the Patterson map, the following scheme resulted in a structure which refined to an acceptable reliability index.

The strongest peak on the electron density map obtained with a negative was taken to be an atom position $x^{\prime}, y^{\prime}, 0$. A corresponding Patterson peak occurred at $2 x^{\prime}, 2 y^{\prime}, 0$ in the zero section of the Patterson map. A superposition of zero section Patterson maps was performed with the origin of the superimposed map placed at $x^{\prime}, y^{\prime}, 0$ on the primary map. A trial structure in the $x, y, 0$ plane was obtained. This trial structure was superimposed on the electron density map discussed above and a second trial structure was obtained from the coincident peaks. The second trial structure contained an atom at the origin and six other independent atom positions.

At this point in the structure determination, use was made of the known structural chemistry of lower transition metal sulfides (Owens, Conard \& Franzen, 1967), and the niobium and sulfur atoms were distributed among the six independent positions and the position at the origin in an attempt to obtain a structure in which there were six niobium atoms about each sulfur atom in a trigonal prism. There was an obvious hole in the structure which resulted from this distribution, and the placement of a niobium atom at this position completed the trigonal prism of niobium atoms about one of the independent sulfur positions. This resulted in a final trial structure with a niobium in the twofold position at the origin, and five independent niobium atoms and two independent sulfur atoms in the eightfold positions, $x, y, 0$. This final structure was refined by least-squares computation (Busing, Martin \& Levy, 1962) using atomic scattering factor tables given by Hansen, Herman, Lea \& Skillman (1964), and after three cycles of refinement, a reliability index, defined by $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$, of 0.12 was obtained.
The structure was further refined by least-squares computation of the 14 positional parameters and eight isotropic temperature factor coefficients, using a weighting scheme based on statistical counting errors. The weights were assigned by calculating a relative error in the observed structure factor for each reflection, namely,

$$
\sigma F=\frac{\sigma_{I}}{2 F(\mathrm{Lp})},
$$

where σ_{I} is the estimated error in the intensity corrected for absorption, F is the observed structure factor and Lp is the Lorentz and polarization correction factor. The square of the error in intensity, σ_{I}^{2}, was taken to be the total counts plus the background counts plus the square of 5% of the total counts plus the square of 5% of the background counts plus an estimated error in the absorption correction. The goodness of fit, defined by

was equal to $1 \cdot 35$, where w is the weight $\left(1 / \sigma_{F}\right)$ of the i th reflection, n is the number of reflections and s is the number of variables. A final unweighted $R=0.063$ was obtained. Table 1 lists the values obtained. Table 2 lists the observed and calculated structure factors for all 557 observed reflections, and in addition, lists 60 unobserved reflections using parentheses to indicate $F_{\min }$ calculated using the background intensity. The unweighted R including the unobserved reflections was $0 \cdot 086$. Only the observed reflections were used in the least-squares refinement.

All 47 signs assigned by the direct method agreed with those obtained for the refined structure. For the purpose of checking the correctness of the refinement, a difference Fourier synthesis was performed using all 557 reflections. The synthesis showed the highest peaks, corresponding to about 0.8 electron, in the $z=0$ section. Specifically, the atomic position for $\mathrm{Nb}(2)$ had a positive $\varrho_{o}-\varrho_{c}$ corresponding to 0.8 electron, while those of $\mathrm{Nb}(3)$ and $\mathrm{Nb}(5)$ had negative peaks
corresponding to about 0.7 electron. All other atomic positions in the difference Fourier map had negligible peaks. Interatomic distances obtained from the positional parameters of Table 1 are listed in Table 3. The Thermal Ellipsoid Plot computer program written by Johnson (1965) was used with Slater's (1964) radii to draw the stereoscopic view of the structure along the c axis. The illustration is presented in Fig. 1.

Discussion

The apparent coordination of both independent sulfur atoms in $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ is similar to that of the sulfur atoms in $\mathrm{Ti}_{2} \mathrm{~S}$ (Owens, Conard \& Franzen, 1967), to that of phosphorus and silicon in compounds with the cementite structure as discussed by Aronsson, Lundstrom \& Rundqvist (1965) and to that of Ta and Nb in $\mathrm{K}_{2} \mathrm{TaF}_{7}$ and $\mathrm{K}_{2} \mathrm{NbF}_{7}$, respectively (Hoard, 1939). Each sulfur atom is surrounded by a slightly distorted trigonal prism of niobium atoms with additional close metal atoms around the waist of the trigonal prism, i.e. ideally, on lines perpendicular to the centers of the rectangular faces of the prism, as shown for $\mathrm{S}(1)$ in Fig. 2.

Table 1. Refined atomic positions for $\mathrm{Nb}_{21} \mathrm{~S}_{8}$

	Wyckoff notation	x	y	$\sigma(x)$	$\sigma(y)$	B	$\sigma(B)$
$\mathrm{Nb}(1)$	$2(a)$	0.0	0.0			$0.36 \AA^{2}$	$0.05 \AA^{2}$
$\mathrm{Nb}(2)$	$8(h)$	0.0813	0.4502	0.0001	0.0001	0.26	0.02
$\mathrm{Nb}(3)$	$8(h)$	0.2777	0.0202	0.0001	0.0001	0.58	0.03
$\mathrm{Nb}(4)$	$8(h)$	0.3843	0.1851	0.0001	0.0001	0.47	0.03
$\mathrm{Nb}(5)$	$8(h)$	0.1919	0.1986	0.0001	0.0001	0.54	0.03
$\mathrm{Nb}(6)$	$8(h)$	0.4509	0.3643	0.0001	0.0001	0.53	0.03
$\mathrm{~S}(1)$	$8(h)$	0.1377	0.0637	0.0003	0.0003	0.30	0.07
$\mathrm{~S}(2)$	$8(h)$	0.2126	0.3644	0.0003	0.0003	0.35	0.07

Table 2. Observed and calculated structure factors for $\mathrm{Nb}_{21} \mathrm{~S}_{8}$

[^1]

Fig. 1. Stereoscopic illustration of the $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ unit cell viewed along the c axis.
'「able 3. Interatomic distances in $\mathrm{Nb}_{21} \mathrm{~S}_{8}(\pm 0.003 \AA)$
Reference

atom	Neighbor	neighbors	Distance
$\mathrm{Nb}(1)$	S(1)	4	2.547 £
	Nb (6)	8	2.949
Nb (2)	S(2)	1	2.634
	Nb (2)	4	2.819
	Nb (4)	2	2.884
	Nb (3)	2	2.946
	Nb (2)	1	3.202
$\mathrm{Nb}(3)$	S(1)	1	$2 \cdot 462$
	S(2)	2	2.570
	Nb (4)	2	$2 \cdot 902$
	Nb (2)	2	2.946
	Nb (6)	2	$3 \cdot 140$
$\mathrm{Nb}(4)$	S(2)	2	$2 \cdot 482$
	Nb (5)	2	2.877
	Nb (2)	2	2.884
	Nb (3)	2	2.902
	Nb (6)	1	3.210
	$\mathrm{Nb}(5)$	1	$3 \cdot 238$
$\mathrm{Nb}(5)$	S(1)	1	2.440
	S(2)	2	2.551
	S(2)	1	2.806
	Nb (4)	2	2.877
	Nb (5)	2	$3 \cdot 100$
	Nb (6)	2	$3 \cdot 112$
	Nb (4)	1	3.238
Nb (6)	$\mathrm{S}(1)$	2	2.533
	S(1)	2	2.548
	Nb (1)	2	$2 \cdot 949$
	Nb (5)	2	$3 \cdot 112$
	Nb (3)	2	$3 \cdot 140$
	$\mathrm{Nb}(4)$	1	$3 \cdot 210$
S(1)	Nb (5)	1	2.440
	Nb (3)	1	2.462
	Nb (6)	2	2.533
	Nb (1)	1	2.547
	Nb (6)	2	$2 \cdot 548$
S(2)	Nb (4)	2	2.482
	Nb (5)	2	2.551
	Nb (3)	2	2.570
	Nb (2)	1	2.634
	Nb (5)	1	$2 \cdot 806$

The two bonding interpretations proposed for S in $\mathrm{Ti}_{2} \mathrm{~S}$ can be discussed with regard to $\mathrm{Nb}_{21} \mathrm{~S}_{8}$. The first interpretation was based on the assumption that all bond orders are given approximately by the empirical relationship due to Pauling (1960):

$$
\begin{equation*}
D(n)=D(1)-0.6 \log n \tag{1}
\end{equation*}
$$

This interpretation yields, in this case, the approximate niobium and sulfur valences listed in column two of Table 4. These valences are reasonable if it is assumed that niobium has a maximum valence of five and that sulfur has a valence of about four, in accordance with

Fig.2. A sulfur atom is surrounded by a slightly distorted trigonal prism of Nb atoms with an additional close metal atom just removed from one of the rectangular faces of the prism. The values in parentheses are summations of Slater's radii.
the bonding scheme utilizing sulfur d orbitals previously proposed (Franzen, 1966).

Table 4. Valences for $\mathrm{Nb}_{21} \mathrm{~S}_{8}$

	Valence based on 7-fold coordination	Valence based on trigonal prismatic coordination only
$\mathrm{Nb}(1)$	4.97	2.86
$\mathrm{Nb}(2)$	4.50	4.12
$\mathrm{Nb}(3)$	3.62	3.62
$\mathrm{Nb}(4)$	4.31	4.31
$\mathrm{Nb}(5)$	3.86	3.67
$\mathrm{Nb}(6)$	3.74	3.74
$\mathrm{~S}(1)$	4.22	3.69
$\mathrm{~S}(2)$	3.93	3.36

Interatomic distances less than $3.25 \AA$ are used.

The second proposal was based on the hypothesis that sulfur bonding in compounds of this type is directional in nature, with the bonding orbitals directed toward the corners of a trigonal prism. The basis for this hypothesis was the marked tendency of sulfur, selenium and tellurium to form compounds in which the coordination of the chalcogen is trigonal prismatic and the lack of structures in which the chalcogens expanded their coordination beyond six. According to this interpretation, the short $\mathrm{S}(1)-\mathrm{Nb}(1)$ distance would be primarily determined by the bonding of both $\mathrm{S}(1)$ and $\mathrm{Nb}(1)$ to four $\mathrm{Nb}(6)$, as shown in Fig. 2. The valences calculated assuming that the only niobium atoms to which the sulfur atoms are bonded are those at the corners of trigonal prisms but that equation (1) otherwise applies, are given in column three of Table 4 and are again in accord with the scheme in which sulfur d orbitals are utilized in the formation of sulfurniobium bonds.

Evidence favoring the proposal that sulfur is bonded to 7 metals is provided by a comparison of the valences of $\mathrm{Nb}(1)$ in columns two and three of Table 4. The valence of 2.9 calculated on the assumption that the waist niobium atoms are not bonded to the sulfur is unreasonably low, while the value $5 \cdot 0$, obtained by the assumption of equation (1) only, is entirely reasonable for a compound of this kind.

It is concluded that the nature of the bonding of sulfur in compounds of the types discussed here ($\mathrm{Ti}_{2} \mathrm{~S}$ and $\mathrm{Nb}_{21} \mathrm{~S}_{8}$) is metallic, i.e. that the bonding is of the delocalized, electron deficient type characteristic of metals. It is furthermore concluded that there is a significant contribution of the sulfur d orbitals to the valence (conduction) band.

The authors acknowledge the suggestion of Professor J. D. Dunitz that the direct method be used in the structure determination. Prior attempts at solving the Patterson function had been fruitless. The authors express their appreciation to Drs R. A. Jacobson and D. R. Fitzwater and their co-workers for assistance in using the IBM 7074 and 360 systems, to Mr Don Bailey for his assistance in taking intensity data, and to R. Z. Bachman and D. E. Carlson for performing combustion analyses.

References

Aronsson, B., Lundström, T. \& Rundqvist, S. (1965). Borides, Silicides, and Phosphides. New York: John Wiley. Biltz,W. \& Köcher,A. (1938). Z. anorg. allg. Chem.237, 369. Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180. Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). Oak Ridge National Laboratory Report ORNL-TM-305. Franzen, H. F. (1966). J. Inorg. Nucl. Chem. 28, 1575.
Franzen, H. F., DeJong, V. W. \& Conard, B. R. (1966). J. Inorg. Nucl. Chem. 28, 3052.

Franzen, H. F. \& Graham, J. (1966). Z. Kristallogr. 123, 133.

Hansen, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

Harker, D. \& Kasper, J. S. (1948). Acta Cryst. 1, 70.
Hauptmann, H. \& Karle, J. (1953). Solution of the Phase Problem, I. The Centrosymmetric Crystal A.C.A. Monograph No. 3. Wilmington: The Letter Shop.
Hoard, J. L. (1939). J. Amer. Chem. Soc. 61, 1252.
Jellinek, F. (1962). Ark. Kemi, 20, 447.
Johnson, C. K. (1965). Oak Ridge National Laboratory Report ORNL-3794.
Owens, J. P., Conard, B. R. \& Franzen, H. F. (1967). Acta Cryst. 23, 77.
Pauling, L. (1960). The Nature of the Chemical Bond. 3rd Edition. Ithaca: Cornell Univ. Press.
Slater, J. C. (1964). J. Chem. Phys. 41, 3199.
Woolfson, M. M. (1961). Direct Methods in Crystallography. Oxford: Clarendon Press.

[^0]: * Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission. Contribution No. 2041.

[^1]:

